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Phonon Drag on Dislocations at High Pressures 

W. G. Wolfer 
Chemistry and Materials Science 

Lawrence Livermore National Laboratory 
Livermore, CA 94550. USA 

Phonon drag on dislocations is the dominant process which determines the flow stress of 
metals at elevated temperatures and at very high plastic deformation rates. The 
dependence of the phonon drag on pressure or density is derived using a Mie-Grueneisen 
equation of state. The phonon drag is shown to increase nearly linearly with temperature 
but to decrease with density or pressure. Numerical results are presented for its variation 
for shock-loaded copper and aluminum. In these cases, density and temperature increase 
simultaneously, resulting in a more modest net increase in the dislocation drag 
coefficient. Nevertheless, phonon drag increases by more than an order of magnitude 
during shock deformations which approach melting. 
Since the dependencies of elastic modulii and of the phonon drag coefficient on pressure 
and temperature are fundamentally different, the effect of pressure on the constitutive law 
for plastic deformation can not simply be accounted for by its effect on the elastic shear 
modulus. 



1. Introduction 
:, 

The plastic deformation of crystalline materials is caused by the simple slip motion of 
dislocations. The flow stress required to set dislocations in motion depends on many 
factors and interactions with numerous crystal defects. In spite of this complexity, it is 
nevertheless possible to identify the dominant processes of glide mobilization for a given 
crystal structure type, a given temperature, and a given strain rate. This classification of 
the dominant deformation mechanisms is now well known and referred to as the Ashby 
deformation maps’. According to these maps, dislocations spend most of their time 
pinned or trapped by glide obstacles when the strain rate is below 104, and very little 
time in motion. On the other hand, when the strain rate is lo5 or greater, the free flight 
time between consecutive arrests becomes of the same order as the waiting time. In this 
case, the flow stress becomes dependent on the drag exerted by the lattice vibrations and, 
at cryogenic temperatures, also by the conduction electrons. These drag forces on the 
moving dislocations have the same physical origin as do the residual thermal and 
electrical resistivities of stationary dislocations. In both cases, the phonons or electrons 
flow past the dislocations which scatter them and thereby dissipate energy. 

Plastic deformation at very high strain rates is often achieved under shock loading 
conditions which also generate very high hydrostatic pressures and temperatures. It is 
therefore important to understand the effect of high pressure on the phonon drag 
coefficient. In the present paper, this dependence will be determined assuming a Mie- 
Grueneisen equation of state. 

The paper is organized as follows. In section 2, a simple constitutive model is described 
for plastic deformation which incorporates the two major mechanisms in dislocation 
mobilization, namely thermally activated escape from obstacles or junctions, and 
overcoming the phonon drag. This fundamental model for dislocation mobility is the 
basis for many empirical constitutive laws used in plasticity theory. Next, we review in 
section 3 the theory and the experimental measurements of the phonon drag coefficient, 
and then derive in section 4 the relationships which determine its pressure and 
temperature dependence. Numerical results for copper and aluminum are presented in 
section 5. 

2. Constitutive Laws for Plastic Deformation 
Dislocation reactions and processes during plastic deformation are extremely complex, 
and the diversity of phenomena is perhaps one of the richest to be found in materials 
science. Yet the stress-strain curves of metals exhibit few and simple characteristics 
which can be described by simple mathematical relationships. Apparently, much of the 
complexity of the many-defect system becomes statistically averaged at the continuum 
level, leading to simple, empirical relationships for the plastic constitutive laws. But since 
there does not yet exist a rigorous statistical theory of an evolving dislocation network, 
constitutive laws for plastic deformation are still formulated in terms of a single 
dislocation segment subject to an effective stress. This effective stress is a sum of the 
externally applied stress and mean-field internal stresses generated by local glide 



obstacles, by other dislocation segments and junctions with them, and by the polarisation 
stresses of surrounding precipitates, subgrains and grains. In short, the internal stresses 
have contributions from all length scales except those captured in the applied stress term, 
and they represent the effect of all the many-defect interactions between one generic 
dislocation segment with all other defects. The dividing length scale for external and 
internal stresses is to some extent a matter of choice, as it depends on the resolution 
desired or appropriate for the continuum stress analysis. 
According to Gillis, Gilman, and Taylor* , a dislocation segment moves on the average a 
distance L between consecutive stops at glide obstacles. Denoting the average waiting 
time as t, , and the mean free-flight time between stops by t, , the average dislocation 
velocity is 

<v> = L/(t,+ t, ) (1) 

while the average flight velocity is 

Vf = L/t, . (2) 

This flight velocity is determined by the mechanical force b7 acting on the dislocation 
and by the drag force Bv, . Neglecting the very short period of acceleration, 

bz = Bv, . (3) 

Here, b is the Burgers vector, z is the resolved shear stress on the glide plane, and B is the 
drag coefficient. 
To derive a constitutive law we follow the arguments of Kroener and Teodosiu3. 
If there is a density of p, dislocation segments which can potentially be mobilized, and if 
pf is the dislocation density in flight and p,= p, - pf the density at rest, then 

dPf _ Pw Pf 

-z-t, 

-- 

t, * 
(4) 

For time scales longer than t, , the solution to eq. (4) is very close to the steady-state 
solution 

The rate of plastic shear is now given by 

?j = bp,v, = b 

(5) 

The rate of release of a dislocation segment from its present glide obstacle is assumed to 
be controlled by a stress-assisted, thermally activated process expressed by the Arrhenius 
formula 



(7) 

where the attempt frequency of the dislocation segment is given by 

+bv 
-h w 

Here, v, is the Debye frequency and h is a characteristic length parameter of the glide 
obstacle, for example, the average distance between glide obstacles in the case of fee 
metals or the width of a double kink in the case of a screw dislocation in a bee metal. 
From eqs.( 1) and (2) one obtains 

t,=LB bz’ 
If one now inserts eqs. (7) and (9) into eq. (6)) one arrives at the constitutive law 

b2 p, 
’ = (hlLv,)exp{AG(z)lkT} + (B/T) 

(10) 

As mentioned above, the shear stress 7 is an effective local stress and written as 

(11) 

The first term is the shear stress due to the applied loads and the one experimentally 
measured or controlled, and the second term is due to internal sources. This stress is 
known by various names, e.g. back stress, threshold stress, athermal part of the yield 
strength, friction stress, etc. Each of these names invokes a somewhat different aspect of 
the mean-field internal stress and its contributions from many length scales. The reason 
why the effective stress is written as a difference is the intuitive view that plastic flow 
produced by an applied stress can occur only when it exceeds a given value determined 
by the state of the internal dislocation microstructure. 
The constitutive law embodied in eqs. (10) and (11) contain both physical and 
microstructure parameters as listed in Table 1. The distinction between the two types is 
not entirely perfect as two parameters fit both categories. The physical parameters have 
well defined dependencies on pressure and temperature while the microstructure 
parameters are average quantities with ill defined statistical aspects and dependencies on 
prior deformation and materials processing variables. 
The contributions to the internal stress 2, which depend on dislocation-dislocation or 
defect-dislocation interactions usually scale with the elastic shear modulus. This scaling 
is also noted when one compares the Ashby deformation maps for materials belonging to 
the same crystal structure group. When these maps are depicted in reduced units of stress 
divided by shear modulus and temperature divided by the melting point, the maps 
become nearly identical. As a result, it is generally assumed that shear stresses used in 



formulating constitutive laws should really be replaced by corresponding elastic shear 
strains. In other words, eq. (10) should be written as 

b2 P, 
= (hlLv,)exp{AG(zlp)/kT} + (B/~J)(~/T)’ 

(12) 

where ~1 is an appropriate shear modulus. In some constitutive plastic deformation laws 
based on eq. (12), for example one proposed by Steinberg and Lund4, the implicit 
assumption is made that B/p is independent of pressure and temperature. However, as 
will be shown below, this is not a valid assumption. 

Table 1. Physical and Microstructure Parameters 

Physical parameters Microstructure parameters 
which depend on P and T which depend on deformation history 

P 
b 
B 

Pm and Pf 
L 

VI3 =I 

h h 

AG AG 

3. Phonon Drag on Dislocations 
The mechanisms and theoretical approaches to dislocation drag have been reviewed by 
Nabarro 5. With regard to the phonon drag , there are two complementary approaches. 
Mason’s approach considers a dislocation moving through a viscous medium. The 
viscosity is a sum of two contributions: one from the electrons, and one from the 
phonons. The electron viscosity is determined from theoretical models, and the phonon 
viscosity is derived from the experimentally measured damping coefficient of sound 
waves by subtracting the electronic contribution. In this manner, a total dislocation drag 
coefficient is predicted as a function of temperature. It exhibits a marked increase at 
cryogenic temperatures where the electronic contributions dominates. However, this 
increase is in conflict with the direct determination of dislocation damping under a 
dynamic bias stress, as measured by Hikata et al. 6. It also is in conflict with the 
theoretical derivation of the electronic drag coefficient by Kravchenko 7 and by 
Brailsford* which gives a temperature-independent value. Hikata et al. have in fact shown 
that their experimental results are in agreement with this temperature-independent value 
at cryogenic temperatures, and with a temperature-dependent phonon drag coefficient at 
high temperature as originally derived by Leibfried 9 and later on refined by Brailsford lo. 



In the approach pioneered by Leibfried, the scattering of an elastic wave or phonon by a 
dislocation is computed. Taking the difference of the scattering for two waves, one 
propagating in the direction andlthe other opposite to the moving dislocation, and then 
averaging over all wave directions and phonon frequencies, he obtained the following 
phonon drag coefficient: 

B,, = xEPh 
lOc, 

(13) 

Here, q is the cross-section of the dislocation core per unit length, c t is the transverse 
sound speed, and EPh is the average thermal phonon energy per unit volume. Qualitative 
arguments led Leibfried to the conclusion that q is of the order of the lattice parameter. 
Brailsford lo has provided a much more detailed derivation of phonon drag and shown in 
the process that Mason’s theory is inadequate as it takes not into account that the phonon 
viscosity is both frequency and wave-vector dependent. In addition, Brailsford’s 
treatment encompasses all the different mechanisms mentioned by Nabarro, and it shows 
that the phonon scattering mechanism first considered by Leibfried is indeed the 
dominant one. 
Hikata et al. have demonstrated that the Leibfried formula together with a temperature 
independent electronic drag contribution provide an excellent expression for fitting the 
dislocation drag measurements in aluminum. We will discuss this comparison of theory 
and experimental data in section 6. 

4. Temperature and Volume Dependence of the Phonon Drag 
Within the Debye approximation, the average thermal phonon energy can be written as 

w3 
e hwlkT -1 

(14) 

Here, C is the average sound speed which can be related to the Debye frequency on by 

(15) 

where N is the number of atoms in the volume V. It is convenient to introduce now the 
dimensionless variables 

x=ftw/kT and x,=Ao,/kT=O,/T (16) 

The average thermal phonon energy can then be written as 

qlh = 9kT(N/V)D,(x,) (17) 

where D, is the Debye integral 



D,(x,) = +i”““x 
:,xD ,e”-1 

(18) 

The Debye temperature 0, is a function of the volume, and its dependence can be 
evaluated from the Grueneisen constant l?(V) according to the equation 

~n[@,(V)/@,(VO>] = l+)dV 

To complete the volume dependence of the drag coefficient, we use the following 
approximation for the transverse sound speed in an elastically isotropic material: 

(20) 

Here, v is the Poisson’s ratio taken to be equal to l/3. 
Finally, the scattering width of the dislocation changes with the volume according to 

q = q, (v/v,)“3 (21) 

Using the above formulae we can express the phonon drag coefficient in the following 
form: 

B,, = 0.209 h q, Q;204’3 ~~&,) 

Here, h is the Planck’s constant, Q o is the atomic volume at standard pressure, and 

(22) 

Let us denote the phonon drag coefficient at standard pressure and temperature (273 K) 
by B$,. Then the volume or pressure dependence can be found from the simple 
relationship 

B,(V,T) = J$” x DE(xD) V D&d 
This relationship is evaluated in the following section. 

(24) 

5. Phonon Drag Coefficient during Shock-Loading 
Phonon drag on dislocations determines the flow stress only at high deformation rates. 
Rates on the order of 10 5 or higher are typically achieved under shock-loading conditions 
which also result in high hydrostatic pressures and high temperatures. The variation of 



the phonon drag coefficient under shock-loading depends then on the simultaneous 
change of density and temperature, i.e. on the Hugoniot and the equation of state. 
In the following numerical evaluation, we use the equation of state data for copper and 
aluminum as compiled by Eliezer et al.“. 
Figure 1 shows the Hugoniot curve for Cu and Figure 2 the associated temperature, the 
Debye temperature, and the melt temperature. The latter is obtained from the theoretical 
work of Moriarty 12. Melting is predicted to occur at a pressure of about 2.3 Mb. The 
variation of the phonon drag coefficient over the pressure range of solid copper is shown 
in Figure 3. It is seen that the drag coefficient increases with the pressure up to a factor of 
about 14. 
The corresponding results for aluminum are displayed in Figure 4 for the Hugoniot. The 
temperature along the Hugoniot, the Debye temperature as well as two melt temperatures 
have been predicted by Moriarty, Young, and Ross i3, and they are shown in Figure 5. 
The curve denoted by GPT is obtained with the generalized pseudopotential theory of 
Moriarty 14, while the curve labeled HLP is a prediction using the Harrison local 
pseudopotential. Note that the melt temperature predictions were not adjusted to the 
known melting point of aluminum, and they are somewhat higher at standard density. 
Melting on shock compression is predicted to occur at a compression ratio’of 1.74 or a 
temperature of about 5500 K. Figure 6 shows the variation of the phonon drag 
coefficient. It is seen that the drag coefficient for Al increases by a factor of 25 before 
melting occurs. 

6. Discussions 
The phonon drag coefficient according to eq. (24) is both a strong function of 
temperature and density or pressure. To display these dependencies separately, let us 
consider the case for copper. Figure 7 shows the temperature dependence for a constant 
density, neglecting the small density changes due to thermal expansion. It is seen that the 
phonon drag coefficient increases linearly with temperatures for values of the order of the 
Debye temperature or greater. It changes roughly by an factor of 6 for a 1000 K 
temperature increase. The reason for the increase is that the phonon density rises with 
temperature. 
In contrast, when the density of the material increases at constant temperature, the 
phonon drag coefficient declines. Over the density range where copper remains in the 
solid state during a typical shock deformation, the coefficient drops roughly by an order 
of magnitude, as can be seen from Figure 8. The reason for the drop in phonon drag with 
density is the increase in the Debye temperature, see Figure 2, or the reduction in the 
phonon density. 
In shock deformation experiments where both the temperature and the density increase 
simultaneously, there is a partial cancellation of the two effects on the phonon drag, and 
it is for this reason that the net change is, for example, only a factor of 14 in the case of 
copper. 
One of the major objectives of this investigation was to determine the appropriate 
dependence of the flow stress with pressure or density. As pointed out in section 2 and in 
the formulation of the constitutive law of eq. (24), it is often assumed that the pressure 
dependence is solely contained in the shear modulus because plastic deformation depends 
on (~//cl). Implicit in this assumption is then that other materials parameters entering the 



constitutive law are independent of pressure or density. We have seen that these 
assumptions do not apply to the phonon drag term. In order to obtain the correct pressure 
dependence, one must examine the physical basis for the phonon drag on a dislocation 
and derive or determine its true pressure and temperature dependencies. 
This raises the question as to the pressure dependence of the thermally activated process 
in the constitutive deformation law, i. e. when the phonon drag is absent as in the 
Steinberg-Guinan model 15. The present assumption that this dependence can be 
accounted for with a pressure-dependent shear modulus needs to be critically examined. 
We finally notice, as did Hikata et al. earlier, that the Leibfried equation (13) provides 
excellent quantitative predictions for the phonon drag coefficient. Figure 9 shows the 
experimental results for aluminum of Hikata et al. Using a scattering cross section of q 
equal to one Burgers vector and adding to equation (13) a constant electron drag 
coefficient of 1.4 dynes se&m’, the solid curve in Figure 9 is obtained. The agreement 
between the theoretical and experimental results is obvious. 
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Figure 1. Hugoniot for Cu 
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Figure 2. The Hugoniot, Debye, and Melt temperatures for Cu. 
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Figure 3. Variation of the Drag Coefficient with Pressure for Shock-Loaded Cu. 
The Debye temperature at standard conditions is 329 K. 
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Figure 6. Variation of the Drag Coefficient with Pressure for Shock-Loaded Al. 
The Debye Temperature at standard conditions is 399 K. 
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Figure 7. The temperature dependence of the phonon drag for Cu at constant volume. 
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Figure 8. The volume dependence of the phonon drag for Cu at constant temperature. 
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Figure 9. Comparison of experimental results with theoretical predictions. 
A constant electronic drag coefficient of 1.4 e-5 dynes se&m’ and 
a scattering width of one Burgers vector is assumed. 


